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Solution of the Mean Spherical Approximation for
Hard Ions and Dipoles of Arbitrary Size

L. Blum?!
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The general solution of the mean spherical approximation (MSA) for an
arbitrary mixture of hard spherical ions and dipoles, in which the ions
can be of different size, is found. This solution is given in terms of three
parameters that are calculated by solving an algebraic equation. Two of
these parameters are scaling parameters required to satisfy the general
symmetry of the pair correlation functions, and are similar to the one
introduced in the solution of the MSA for an ionic mixture in earlier work.
For equal size and low ionic concentration, we get a rather explicit solution
of the MSA, which is formally similar to the Waisman-Lebowitz solution
of the restricted primitive model, but with a concentration-dependent
dielectric constant.

KEY WORDS: Mean spherical approximation; electrolytes; nonprimitive
electrolytes.

1. INTRODUCTION

One of the important aspects of the theory of electrolytic solutions is the
proper understanding of the solvation effects. By this we understand the
difference in the behavior and structure of a real ionic solution in which the
ions and the solvent are real molecules and the so-called primitive model
in which the solvent is considered as a continuum that pervades the entire
system. Aqueous solutions are certainly the most interesting systems, but
here, and in spite of the very impressive progress in our understanding of
liquid water, our knowledge of the structure and interactions of the mole-
cules and the fluid is far from complete. Moreover, even if we knew the
detailed structure and interactions of water, it would be a real task to study
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the statistical mechanics of simple ions with it. Therefore a model that is
more realistic than the primitive model, such as the mixture of hard ions
and dipoles, could yield helpful information.

For the primitive model it has been shown that the mean spherical
approximation (MSA) of Lebowitz, Percus, and Yevick®+? is not only a
tractable approximation, but also leads to quite good agreement with com-
puter experiments. The final analytical solution of the restricted (equal-size)
case was obtained by Waisman and Lebowitz‘® and yielded excellent agree-
ment with the more elaborate calculations using the hypernetted chain
approximation (HNC) and the machine calculations using the Monte Carlo
technique. In his rather beautiful work, Wertheim‘® showed that the MSA
had also an analytical solution for a system of hard dipoles.

We do not expect the MSA to be numerically very accurate in this case,
at least in the interesting case of high dielectric constant (dipole moment).
It should be quite reasonable for the weak coupling limit, in which the
dielectric constant is low (20).

At any rate, the results of the MSA can be improved systematically
either using the graphical expansions of Andersen and Chandler® or the
GMSA of Waisman® and Haye e al.” Final word on the accuracy of any
of these approximation schemes can be obtained only by comparison with
machine computations, which are presently unavailable.

The case of a mixture of equal-size ions and hard spheres was solved
some time ago by the present author® and independently by Adelman
and Deutch.® The results of these works do not seem to be in complete
agreement for all concentrations of the electrolyte, but they are for low
concentrations. In the present work we want to give the solution of the
MSA for the case in which we have an arbitrary mixture of hard ions and
one species of solvent, represented by hard ions. We recall that in the case
of the primitive model, the solution of the MSA was given in terms of a
single scaling parameter 2I.'® This scaling length has the same physical
interpretation as the Debye shielding length, and considering the asymptotic
form of the pair correlation function for low ionic concentrations, we can
also conclude that indeed 2T is the shielding length for the system. In the
present work, the symmetrization condition requires two, rather than one,
scaling parameters. A simplistic interpretation of this is provided by the
idea that now we will need two different types of screening, one of ions by
ions and another of ions by dipoles. The solution consists in showing that
all the properties of the system can be expressed as functions of the two
scaling parameters and the dipole—dipole excess energy parameter, and that
these quantities can be found by solving a system of algebraic equations.
For the case in which all the ions are of equal size (but the solvent can be
of different size) we get a set of three equations that can be shown to be
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identical with those of Ref. 8. Furthermore, the solution given in that
paper is pushed a little further and an explicit expression for the excess
energy parameter of the ion—ion interaction is found. The result shows that
the thermodynamic properties are given by the same formulas of the restricted
primitive model, but with a concentration-dependent dielectric constant,
for sufficiently low ionic concentration. A very brief discussion of the
thermodynamic properties is given in the last section.

2, METHOD OF SOLUTION

The method of solution derives from our earlier work on the equal-size
mixture of ions and dipoles and on the mixture of unequal size ions.®1®
The notation will be similar to that employed in these works. Qur system
is composed of a mixture of # — 1 components of diameter o;, electrovalence
z;, and number density p; (1 < i < n — 1). The role of the solvent is played
by an assembly of hard spheres of diameter o,, number density p,, and
dipole mement p*. Since the ions are spherical, the pair correlation function
g:,(ri;) depends only on the center-to-center distance

ry =5 — 1 (1)

where r; is the position of ion i. For the correlations involving the dipoles,
we need to know also the relative orientations. A convenient way of describ-
ing these correlations is the invariant expansion formalism described in
earlier work 112

84X, X)) = zl g (ri) O™ (R, &, Ry) ()]

m,n,

where X; = ;, R, and R, = «;, B;, y; are the three Euler angles that give
the orientation of the molecule i. The orientation of the intermolecular,
center-to-center vector Ry, is given by R;; = 6,, ¢;. The coefficients ¢ depend
only on the center-to-center distance r;;, while the angular dependence of
the correlations is given by the invariant products

b — (@ 4 D@+ D12 S (70 ) DB Do (@) D)

a2y N
)

where we have used the customary notation for the Wigner 3-j symbols,
and generalized spherical harmonics D7,.(£2,)%® (we will use the notation
and conventions of Edmonds“® throughout).

The coefficients in the expansion (2) are not dependent on the choice
of any particular reference frame. A rather convenient expansion, which
we call the irreducible representation (IRREP), is obtained by taking a
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reference frame with the z axis along the R,; vector. Then, after a slight
rearrangement, we obtain

gs(Xi, X)) = > ginR)OINL,, Q) “
m,n,x
with
mn ___ m n l smnl
8ijx = Z (X —x O)g” &)
and
Ot = [2m + 1)(2n + D' D5(R) D, - (L)) (6)

With this expansion, the Ornstein-Zernike equation becomes a set of
matrix equations, each for a value of y. If the order of the highest multipole
in a particular expansion is n, there will be 2n + 1 matrix equations for
|x| < n. We should remark that the IRREP expansion (4) is very similar
to the helicity expansion used in high-energy nuclear physics. Let us put
this in a more explicit form: Consider the IRREP expansion for the indirect
correlation function #;; = g;; — 1, and also for the direct correlation function
¢;.% To avoid unnecessary repetitions, let us designate either A;; or ¢
by the generic notation f;;: The Fourier Bessel transform of the IRREP
coefficient is related to the invariant coefficient of (2) by

Fg30 = (=yaa 3 (7 2 Ny [T a0

where ji(kr) is the standard notation for the spherical Bessel function of
order /. A convenient integral representation of this function is %

Jkr) = (120 j d P)[e™ + (—)e~t] ®)

where P(¢) is the Legendre polynomial of order /. Using now the symmetry

fi = -y ©

we can write (7) in compact matrix form
F,(k) =f dr [¢"F(r) + e FN(r)],  Fk) = F(=k) (10)
0

where #7 is the transpose cf the matrix & By direct substitution we find
that the matrix elements of (10) are given by

Zz0) = (e 3 (7 ") [T dnnpeinafyey  an
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The inverse transformation from &% to f7*(r) is given in Appendix A.
We should also notice that there is a direct relation to the expansions given
by Wertheim in his original work on dipoles.® Let us designate by J, the
transform of h' and by S, the transform of ¢’. In other words

sy = <y 3 (7 1 [ dnnpimiie) a2)

and

sps) = <y 3 (0 ") [ dnnpeimarey a9

Using now (10), (12), and (13), we get the matrix OZ equation in Fourier
space and in the irreducible representation

[ + e 2021 — 02C,(K)pH?) = 1 (14

To define the mathematical problem, we need now to give the closure
of the OZ equation, that is, a relation between C,(r) and H,(r) outside the
hard core. The simplest closure is the MSA,?~* in which the direct cor-
relation function outside the hard core is proportional to the interaction
potential. In terms of the invariant coefficients (2) we have

e(r) = —BuliM(r), > oy (15)
with
oy = ¥(oy + o)) (16)

B = 1/kT is the usual Boltzmann thermal factor. For electrostatic multipolar
interaction, the pair potential can be expanded as

ui(Xi, Xj) = Z umm(r. ij)(bmnl(ﬂigjﬁii) (17
mnl
with coefficients @9

—— m (21 + 1! vz pmt
urir) = dumen( =) [(2m + DI@n+ DI it

where u™ is the (linear in our case) multipole moment of order m. The MSA
is mathematically simple, because it decouples the IRREPS. But this means
that the cluster graphs corresponding to this approximation will be missing
part of the contributions of the dipole-dipole interaction to the center-to-
center correlation function.

Combining (13) and (15) with the relation

f drlrlP,( )r,l+1 == lf dx P(x)x*"2=0 for 122 (18)
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we have that for the dipole-dipole correlation function the boundary
condition is®

St =0, rzo, (19

where we recall that the index n corresponds to the solvent. For the ion-
dipole interaction the integral for the boundary condition (13) yields

fl dx Pi(x)/x =1

Furthermore, we see from the 3-j symbols of (13) that only x = 0 will
have ion-dipole matrix elements. Physically, this is due to the cylindrical
symmetry of the ion—dipole interaction. Then

Sr) = zay, rz oy (20)
where
oy = (4m/V/3)Bep! (21

{The elementary charge is e throughout.)

Finally, it is clear that for the ion-ion interaction (/ = Q) the integral
(18) of Eq. (13) will diverge. For this reason, we will have to introduce a
convergence factor e~ #": that we cancel out at the end of the calculation.

Hence
f dryrieifr, = e *ifu (22)
and
Sr)y = ag?z;z,8 ™41 [, rz oy (23)
with
ay? = dnPe? 24)

Let us now rewrite the OZ equation with a new direct correlation
function®® in which the long-range interactions have been subtracted:
That is, if

Eir) = &M Or) — Bui™(r) (25)

where é[*® is the short-ranged direct correlation function that is zero for
r = o;;. Calling Co%k) the Fourier transform of this function [defined
according to (11)], we get the OZ equation for x = 0

[7 + p*2#5(k)p™ * KT — ¢V*[Co°(k) — Do(k)]p™?} = 1 (26)
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The structure of the matrices Hy and C, is similar: Explicitly, the C;
matrix for the y = 0 IRREP is

P ocw ocp

c cw ooy

o Cin Ciz
where C2? is the coefficient for the ion-ion correlation, C$? is the spherically
symmetric ion-core-dipole-core correlation, while C%! is the angle-dependent
electrostatic contribution to this interaction. In the MSA, both of these
correlations are decoupled, but in the general case, one would expect them
to depend on each other. Similarly, for the dipoles, the element C32 corre-
sponds to the hard-core interaction of the solvent molecules, while C1}
corresponds to the purely electrostatic interaction. The matrix Dy(k) is also
an n + | square matrix, since we have to include the charge z, = 0 for
the solvent molecules. (Incidentally, the case of molecules with dipolar

moments and charges is rather interesting for the theory of protein solutions.)
We have

zizjle®/(k? + p)] 0 zfey/(p — k)]
Dy (k) = 0 0 0 27)
Ziloy/(u + k)] O 0

The helicity +y = 1 OZ equation for the ion-dipole mixture turns
out to be the same as for the case of the pure dipole case:

[T+ pfa(][1 — puCi(R)] = 1 (28)

which has only one component for the electrostatic solvent-solvent
interactions.

The next step in the solution is the Wiener-Hopf factorization of
the @819 direct correlations. For ¥ = 0 we have

{I — p'?[Co°(k) — Do(R)]p**} = Qk)Q(—k) (29)

but from the parity and asymptotic behavior of the left-hand side of (29) in
the complex plane, we know that the matrix elements of the Baxter factor
correlation function Q(k) must be of the form

o0

44
50 = oo = oy [ ar e o) — iy [ ar )
Az

Ag
(30)
where m,n = 0,1;1 < i,j € n; and

Ay = Ho; — o) 3D
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To get further constraints on Q(k), let us examine the inverse Fourier
transform of (29)
SEMr) + Di(r)e™(r)
= [—QF™(r) + AF10(r — A) + [— QI (—r) + AFM10(—r — Ny)

[G’k;,dkj-i'f]
+ Zpk{qo"%r)AwlA%x +f dr, QIS (r) Q3 — 1)
[

kny AteisApy+ 7]
Ok Oy
[T aaporey - [T aamome)} o)
[Py, T+ Ayl [Akgs Aies — 71

where D7* are the coefficients, and ¢™"(r) are the radial dependent parts
of the matrix elements of the matrix Dy(r). In other words,

DY = ag’ziz;; %r) = e " 2p
Dy = oz P°l(r) = e7™0(r) (33)
Dy} = oz ¢'%r) = e*™6(—r)
In (32) we have also used the notation 8(x) for the Heaviside function,
and the square brackets [x, y] in the limits of the integrals indicate either

the least upper bound or the largest lower bound.
If we multiply (32) by w and then take the p — 0 limit, we get

= . pedips g (34)

But D, is a very singular matrix, and it has only two nonzero eigenvalues.
It can be shown therefore that the above relation also implies that A is also
singular, and that

A?’:l = Ziak", Aik =y, n = 0, 1 (35)
(where a," is defined by this relation) so that, using (27), we get
2? = > pel@°) + pa(@?)? (36)
k

where ay? is defined by (24). This equation is the generalization of Eq. (14)
of Ref. 8b.
From the continuity of S7"(r) at the boundary r = o;; we get from (32)

Qi™oiy) = 0 (37
Also from (32), and for r > o;;, we need
DY} = AR — 3 pAY K (38)
kny

where we have used the notation

(&1}
=1 dr Q5(r) (39

Az
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Because of (35) and using (21) and (27), we see that the boundary
condition (38) can be rewritten in the more compact form

o =@ (1 — pKi) — > pja KA (40)

jsn-1

which again is the generalization for the mixture of the corresponding relation
for the pure ionic case. Another relation that will be needed is the symmetry
relation

PAn) — AP = 0F(\y) — A (41)
which again is quite similar to the one of the ionic case. This condition
ensures that Cy(k) has the correct symmetry under the transformation
k— —k,

The functional form of Q(r) is obtained from the Fourier inverse of
(L + p2A5(k)p?10(k) = [QT(—K)]* (42)

which is

JE(r) = Q) — AT + WJWJlo—mwwm—Mﬂ
knl
43)

where we have included in Q7"(r) the Heaviside function that makes this
function zero for r > ;.
Consider now the form of Ji(r) for r < ¢;;: From (12) and since

Ry = 0, mn,l#0; r<oy (44)
R0y 1, r < oy 45)
we get
Joe ¢ 0 Jo T 0

w5 B T A w

where the constants are explicitly given by
JP = 2n f dr rh3*%(r) (47)
T = —=JY® = —(2x/V3) J dr h3¥(r) (48)
T = 301192 [ dr ) 49)

0

A

—277'{(]/\/3) f T rhi0(r) + (1/4/30) J drh;f(r)} (50)

I

111
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It is quite simple to see that (46) and (43) imply that Q(r) must be a
polynomial of the second degree. Furthermore, because of (37), we see that
it must be of the form

ahr) = Q" (r — o) + QLY (r — oy)? (51)

After some rather tedious algebra (see Appendix B) we find the
following relations for the parameters a," of (35):

a° = =(2/Da)[N; + (7[28)0:Py — (pa0s®[4D) Q2 0n;] (52)

where we have used the following definitions (n is always the label for the
solvent species, and all the summations are over the ionic species only,
unless otherwise indicated):

N; = Z [, + (W/6A)p,a,3][z Pz + %”Unz)] (53)
1 k
n—1
A — 1 _ —l—’n‘ 0,3 54
: Zl P (4
n—-1
P, = Z Pro(Niox + zi) (33)
k=1
n—1
vo= (1A > [ + peo(@/6A) 2 (56)
E=1
A, =1-— by/6 7)
b2 = Pnans‘]}t}l (58)
n-1
n= > sy + (120)p0%0)] (59)
k
n-1
Q1 = > pow(Noy + 2i) + 0,853 (60)
K=1
with
n—1
711.0 = Z kakJ},,]g = An z PkaVfC (61)
k=1
n—1
D=1+ }p,0,2 z pilowi)? (62)
k=1
and finally

n—1

Dq = (I/D){ Z pr(Niuoie + Zie — T2Pn0n B2 vk0x)?

k

n—1
+ z pepil(Niow + z)moy — (Nioy + Zl)Vkak]z} (63)
i
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Also,
nh = [2/(Do)][3onBa° + 32%0A,] (64)
where
0 = i PicZic? (65)
Yo = (1 + 3b2)/(A,2D) (66)

From here we get the coefficients of the factor correlation function
Q(r) (51) for the ion—ion interactions (for clarity we drop the superscripts
from QY

2 :
QiJ = oy + o0;) — l Dnaioajo PG iy (67)
4A 2 2D
and
"o 2 o 0 T Pno'n
& =3 (1 * 2’&‘:2"") 28 %P = 35 "5 P (68)

where we introduced
n-1
P, = Z PO vk and & = Zpy(ox)’ (69)
k

It will be interesting to note that Q;; is directly related to the value of
the pair correlation function g;,(r) at contact, while Qf is directly related
to the compressibility. As will be seen below, both P, and P, are small
quantities in dilute systems (and are also zero for equal ionic sizes), so that
in this case the compressibility of the MSA is just that of the PY hard-sphere
mixture (a well-known result for the MSA).

The value of Qf’(%;;) — A9 required by the symmetry condition (41) is

~ 0%\ + A = (7/A)ojo; + a° M, — p,o,2v0m,2D (70)
where we have used
M; = Nio; + z; — (pp0,%/4D)Q %0, 71

As has been the case in our earlier work in the case of ionic mixtures,*®
we do not have enough equations to close the problem, since there is a set
of 2n + 1 unknown parameters for only three boundary conditions, (36),
(40) and (79), given below. This has to do with the nonuniqueness of the
Wiener-Hopf factorization (29) for matrices. For any arbitrary n, the exact
number of additional equations required by the symmetry of the direct
correlation function is satisfied only if the following scaling relations are
true:

a® = 2I'\M,[Dg — T'0,p,0,%/2D (72)
n; = I'1M; (73)
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The above relations are a conjecture at this point, and we have no
rigorous proof of their validity, other than the fact that they lead to the
correct results for the equal-size case, which was obtained without this
assumption.® For the pure ionic case we know that this procedure leads to
correct and consistent results, as we have shown very recently:

M; = (1/AM){z; — o(@[28)[Py + P,T105p,0,>Dq[4D]} (74)
Vi = (I/AjM){Flzj = ofm28)[PyT'10; + (1 + Do) PJ} (75)

with
AM =1 + Doo; — (I'107)?pp0,° Do/4D (76)
n—-1
Py, = Z PO M an
k

These relations, together with (52)
0 = —(2/De)N; + (1[28)0,P, — p,0,201%,/4D]
and (64)
@t = [2/(Do)l(3o.B° + 1Q21%004,)

are the closure of the mathematical problem of the solution of the MSA for
the general mixture of ions and one kind of hard dipole: We have to find the
interaction parameters a;, N;, and v; as functions of only three scaling-
interaction parameters I'y, I';, b,. The situation becomes quite similar to
that of the solution of the general ionic mixture, where we had to introduce
a scaling parameter I';.?" In that case, too, the scaling parameter had a
direct physical meaning: It was the inverse shielding length for the ionic
correlations. In the present case, we do have two Debye-like shielding lengths,
corresponding to the ion-ion correlation (I'y) and to the dipole-ion cor-
relations (I'y). The parameter b, is just the excess energy parameter of the
dipole-dipole interaction.

The complete solution of the mathematical problem is achieved by
solving a set of three algebraic equations for the three parameters 'y, T'y,
and b, to the three coupling parameters defined by (21), (24), and the
coupling parameter for the dipole-dipole interaction®

a® = 4mfe?, ) = (4n3B(), a1 =« (78)

Two of these equations are already given by (36) and (40). The third
of these equations is obtained from the analysis of (32) and the boundary
condition (15). The analysis follows the lines of Wertheim’s solution® for
the pure dipole case, and the reader is referred to this work for a detailed
discussion (see also Refs. 8 and 9). The result turns out to be the logical
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generalization of the corresponding condition (16) of Ref. 8 for the all-
equal-size case:

yl2 + Pnazz = (1 - PnK’r?n)z + Pn Z Pk[Kreklz (79)
where
y1= (1= $b2)/(1 + v5bo) (80)

Substituting the values of K3" and K%* obtained in Appendix B [Eqgs. (B30)
and (B31)], we get, after some algebra,

ot =3 pu@) + ')’ @)
n-1
apleg — apAl0) = Z P’k + Yoly® (82)
n—1

Yi® + paleg — aoA0)? = yi® + p, Z Pick” (83)

where we have used the notation
Al = ¢,2Q1%/(4DA,) (84)

and

r = 0", /(2DA,) (85)

The resolution of the system of equations (81)-(83) has to be done
numerically and the proper physically acceptable solution has to be selected
from all the possible ones. Perhaps a way of accomplishing this is to start
at low concentrations using the results of the next section, and then solve
for increasing concentrations using the solution of the previous value as an
initial guess.

3. THE EQUAL IONIC SIZE CASE

If the ions are all of the same diameter, but the solvent is still of dif-
ferent size, then the solution of the preceding paragraph can be pushed
further, and as a matter of fact, it can be brought to a form that clearly
suggests the primitive model for the electrolytic mixture. We remark that
the results of this section represent an extension of the previous results®®
to the case of different diameter hard dipoles, and also a rather more com-
plete solution, since we are able to show that for low concentrations the
result reduces to the Waisman-Lebowitz solution for the primitive model.®
Another bonus is that the number and electrovalence of the ions are arbitrary.
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It can be appreciated that since all the ions are of equal size, then the
quantities Py, P,, and P, defined by (55), (69), and (77) are zero. Further-
more, A, (76), does not depend on the index j any more, because all the
ions are equally big, so that from (74) and (75) we see that M; and v, are
simply proportional to the ionic charge z;, and we write

M; =z;M, N;=z,N (86)
vy =z (87)
Replacing now into (52) and (64), we get
a’ = z;a, (88)
g = —(2/DDQ)IN — 4pu0,>%ne(e + J0,8,)] (89)
and
a;' = a; = [2708,/(Da)l{30n + 3yolo(l + No) + 3o,4,] 90)

where y, is given by (66) and we recall that

Mo = z PZi’
For (62) and (63) we get the much simpler expressions
Dq = (9o D)L + No — tp,0,%0Ano ©n
D =1 + }p,0,20%npv? 92)

All of these results are in full agreement with our previous ones in
Ref. 8. We turn now to Egs. (81)~(83): From the above equation and (85)
we can also write

Ot02 = 7}0(102 + pna12 (93)
V pn oy — agA?) = Vp, noaex + yoal\/—/;; 94)
12+ paleg — 2gA10)2 = yo® 4 pyor? 95)

with
A = o 2ungfo(l + No) + 30,0,1((4DA,);  « = v, 2/(2DA,) (96)
In matrix form the same set is

[«/%ao «/Eal] [«/n‘ a (pnno)ﬂ%}

(prmo)*?x Yo \/;l a Yo

= [ %” V py, aolog — oo A0) ]

97
agV pn (g — agA®)  po(ag — A0 + ;2 ©7)
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But the same relationship must hold for the determinants of these
matrices, which then leads to the conclusion that

\/;7:) ao¥o — Pn\/% ik = o)y (98)
We can further eliminate a; between (98) and (94), so that
ao®no[¥o® + panion®] — 24020V 70 Yoy1 + @ [31% — panor®] = 0 (99)
and from this
4o = agf(€'70)"? (100)

with the effective, ionic-concentration-dependent dielectric constant

()12 = Yo + (puno) x(p0® = yi® + pumor®)'? (101)
Yo? + patjor®

Here we choose the sign of the discriminant so as to have a decreasing
dielectric constant with increasing ionic concentration. We see also that
Eq. (101) has the proper limiting behavior for 5, — 0, since it becomes the
Wertheim dielectric constant®

e = yi[yo = NP1 + 32X + +5555)7] (102)

An explicit solution for the ionic interaction parameter N can be found
using (89) and (91)

_ —2No + %anlz(o/o'n + %An)

T T Ve - 5otA ) (109

where we have introduced
b1 = ppo,®nev® (104)
x = o%ay(re/')!/? (105)

which is a second degree equation for No, which is easily solved to yield

No = zobi*(ofo, + $84) + x Y =1 — x[1 + 0%b,%/(40,)]
+ [1 + 2x(1 + 0°b,%/40,)]4/2} (106)

The ion-dipole interaction parameter v can be obtained by eliminating
a, between (85) and (88)

ay = [eo/(yo® + punox®)][yolez — agA1%) — V70 yix] (107)
or, using (90) and (96a),

2A, (oo, 10 Yo
-Z):;( 3 + 2DA A U—nz

o

T pr— [Yolag — gAY — V5o k] (108)
n
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where A0 is given by (96), D by (91), and « by (96). This equation does
not have a closed form solution and therefore has to be solved numerically.

In the dilute solution regime, in which 5, « 1 but \/;;:, is still finite,
and we keep only the terms of the first order in v/n,, a very substantial
simplification occurs, and we get from (106), (96), and (108) the following
set of equations:

No=[-1—x+ (1 + 2x)"?)/x (109)
x = o®aoVno [31/V0 + veuV 10 %20,%/(2y0%A)] (110)

_ aoaz[l + (1 -+ NO’)Z]
2y0An{%0n + %J’D[U(l + NO') + %GnAn]}

(111)

v

and
1Vey = y1/yo

The equation for b,, the dipolar interaction term, remains unchanged
from the pure dipole case, so that Wertheim’s result remains unchanged in
this case, that is, the parameter b, is independent, in this regime of the
ionic concentration.’® We remark also that (109) is formally identical with
the MSA primitive model result,® albeit with a density-dependent dielectric
constant.

4, THERMODYNAMIC PROPERTIES

One of the features of the MSA is that it yields fairly simple expressions
for the excess thermodynamic properties of the mixtures when calculated
via the internal energy.®® For the primitive model of simple salts the calcu-
lated properties are in good general agreement with computer simulations.
It should be remembered also that the same quantities calculated from the
pressure or compressibility relations are in rather poor agreement with each
other and with the computer experiments, and this is a reflection of the
inconsistency of the MSA. A similar inconsistency arises when we try to
compute the energy directly from the quantities V;, »;, and b, [see Egs. (53),
(56), and (58)]

AE, = ¢ z pizilN; + (2/\/§)e,u'p,,An Z pzvi — 3pa(pt)?hofa,® (112)
i 7

Now the excess energy of the solution with respect to the solvent is
AE = AE, — 3(u*)?bo(ps = 0)/0,? (112a)

In fact, replacing the low-density limit for the case discussed in Section 3
[Egs. (109)-(110)], we do not get the properly screened, MSA primitive
model result in the infinite-dilution limit

AE = (¢*ley) > pizil; (113)
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A more natural way of calculating the excess energy is provided by the
use of an effective dielectric constant, such as discussed by Adelman in a
recent work ®?; this effective dielectric constant is concentration dependent,
and is given in our case by

e = (NI — poK%)* + pu D pul K2 (113a)

Whether this dielectric constant is equal to the one given by (101) is an
open question that is left for a future investigation.

The remaining thermodynamic properties are then computed from the
energy relations: The free energy 4 is obtained from the integral

8
AAd =fo d8’ AEB) (114)

and the excess osmotic coefficient A¢ = B AP/p, where AP is the excess
osmotic pressure and p is the-concentration of the electrolyte

Ad = p &(B Ad)/op (115)

Finally, the excess activity coefficient can be calculated from the
thermodynamic relation

Alny, = Ad + BAA/p

Rather simple formulas were recently derived by Heye and Stell2®
and Blum and Heye®? for the excess properties of the primitive model
and also for the pair correlation function. However, these points will be
left for future investigations.

APPENDIX A. THE TRANSFORMS OF THE CORRELATION
FUNCTION

The inverse of the transformation (11} is given by (we drop the indices
for clarity in the notation)

70 = (23 (0 ") [ dnpeinasie

and is obtained, first, by the orthogonality of the 3-j symbols @®

ro=@ny ("

) o) 50 (A1)

where

R = 20| dry Pelr)fi) (A2)
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and P(x) is the Legendre polynomial. Consider now the Fourier transform

of F(r), F(k). Using the integral representation of the spherical Bessel
functions 1%

ity = (1)24%) f ' P (e (A3)
we get
Fk) = %Jw dr & F(r) = dmit J " dr e £ ) (Ad)

Now the inverse of this transform can be obtained from the orthogonality
relation of the spherical Bessel functions:

f i dk K2jkr)jlkry = (=[2rr") 8(r — ') (AS)
so that
L) = (@27 f: dk k% (kr)F(k) (A6)

Using (A4) in this relation, we see that
w0 1 w ] )
70y = [ drs B { s [ e e + (<Yetn} (A7)

Using distribution theory, the second integration can be calculated explicitly:

j =S| " dr, Fir) | apay 2130t + 1) + (=) 8t = 1)
(A8)

where 8(x) is the Dirac delta function. Integration by parts and using (Al)
and (A2) gives us the desired inverse transformation:

4 ! /
oy = -+ vpm 3 (70" )

x [ an %(ro{(l/rnsxr — )+ S+ )]
— (UPP) S — 1) + (=)PL(L) 3(r + )]

+ AR (2)106 = ) + (Yo + n)]} (A9)
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APPENDIX B. THE ALGEBRAIC SOLUTION OF (43)

Let us first rewrite (43) in matrix form

30 - -a+3[5 7]

A—
0

[ a3 - Qe + [ dnTCppa @)

where we recall that J(r) is a matrix polynomial of the form (46)

T A T R I

and we have used the electroneutrality condition -1

n—1 «©
S pe| dnIR0)4B = 44 (B3)
k 0

The algebraic problem is to substitute (51) into (B1) and solve the
resulting equations for the coefficients a,” of (35). While this is a well-defined
algebraic problem, it can be very messy if the proper strategy is not used.
For simplicity in the notation, let us drop the superscripts m, n and write
(51) in the form

Qur) = Qir — o) + 3050 — 0,,)* (B4)
Define also the moments

kg = [ a0 B5)
At

It seems that the most convenient route is to use as independent
variables Q;(A,;) and K§:

Kf = —(022) Qi + (0°/6)0f (B6)
0i(An) = —0:Qi; + (02)QF (B7)
From (B4) and (B5) we also get
Qi(0,/2) = ~(1/o) Qi(Ap) (BB)
Q7 = (12/e®)[(0,/2)Q:,(A;) + Ki] (B9)
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and also
(0;/K5; — Kis = (2/12) Qs,(Az1) (B10)
Using these relations, we find the first derivative of (B1) at r = ¢,/2:
o JOl JOO + ;1;1:62 %Jolo.
JlO Jllon] + _%_JIOO. Ill + %J110n2]p
nt 0 0o Ju
= —[I - [0 Jn]pcs/é](l/c)QA + [Jm 0 ]pKO (B11)

where Q, is the matrix with elements Q;,(;). Another relation is obtained
from the second derivative of (B1)

e JO!
—1%963[ 10 ]pA

JHa,
=1-1 - 00| O b - ek BI12
- _TPGQ)\— _—6‘96 0 Jll { —P } ( )
Since

(B13)

W =1 1903[“ 0]_[8ik_%77pkaks 0 ]
=1-1 =

0 Jit 0 — b,
where b, = p,0,3J1%, is a Jacobi matrix, the general inverse is simple to
obtain:

S + (m/6A)pko,® 0
1= B14
L o ®19
with
n—1
Ap=1—13by; A=1-17> po (B15)
k
Now we can solve (B12) for I — pK°:
I+ po®w/6A 0 Ty, /A
g = [FTEETOR R T peu) + et 21 a1
(B16)
where
Xm = Z PrZikoE™ (B17)

B =3 puzd iR (B18)
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Replacing (B16) into (B11), and solving for I — $6Q,/2, we find

10 1pa? 2fn 0
100, = {|g o] + 5|7 Jemenn s+ S50 e}

N — (1/4D)p,0,2Q%
S RN CX (819)

where we used the following notation

n—1

— _ 7 3y (7 00
[Nl = N; = Z (am + GA POk )(4 Xz + ZPlZkaz) (B20)

D LRV (B21)
g1 = Z pzJi = A, Z Pz (B22)
QLo = Z pelNioi2 + 2o, + 10,A,)] (B23)

D =1+ p,a,2 Z @) (B24)

n; = Z w8y + (m/28)p00] (B25)

From (B19) we get the matrix elements of Q,: For ionic interactions
(m = 0, n = 0) we have

= 0,(A3) = =AY + o0 ZTA_

2
ajo(Nin t 2z - U4D GiVi) - p;_G'Dn_ owm;  (B26)

while for the ion-dipole interactions we get

Q ()‘nz) = _A?n} - 017);/D + a, [NO’, + z — (Pn0n2Q10/4D)aiVi]
(B27)

= 025(Na) = 0uny| D + a4, + 0,Q'°/2D) (B28)

Replacing (B19) into (B16) yields I — pK°. The relevant matrix elements
for our calculation are

—puKan = (A1 + 3bs) + a;'p,0,°Q'[(4DA,) (829)
=Pk} = (puon®[2DA0)n; + @il pro,*Q1°[(4DA,) (B30)
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To calculate the coefficients [a%, a,'] of (35), we take (B1) at the point
r = };, combine with (B11) and (B12), and muitiply by the row vector
{pz, 0]. We get

{[wxlo, Z pkzkakJﬁ}l]—%(I — K% + [y, O]pKl}
k

= —}lpz, 0]Q, — %{Z Plczk"k(z Pz — %’”Xz)}[ao, a,']
E ]

(B31)
Using the relations (B8)-(B10) and (B16) we arrive at
3{a’, anl][ﬂo + Z Pi“izi(z pizd5’ + %”Xz)]
i i
= %[Z pizi Qis(As), 0] - [N, 0]{1 — 3poQ, + 11p0°
i
| ]iat a1} = 10,4870 — 410, 80,18 — dp0Q)

(B32)

where

n—-1
= D Pl (B33)
k

Substituting (B19) into this relation yields
%Dﬂ[aoa anI]
= [=([28)x10, $0,8'°]

n 07
+ =N 0 + (@2D)Epio, {1 + o207 1 o}

(B34)
where

Do = 2 puNigie + 2 + 3pa0?[(0,8"°13)2 ~ (Q*92/D]  (B3S)

which is in complete agreement with our previous result.*® A swift calculation
also yields

Qi = Qn|A)oy + (r/40)o0,La] — 1Daaa — puon®nn,[2D  (B36)
and
Q5 = /A1 + (7]28)05] + (@[28)a° D proNeore + zi)
~ GP28Dpn S ot (B37)
with {;, = > po



Solution of the Mean Spherical Approximation for Hard lons 473

APPENDIX C. EXPLICIT SOLUTION FOR M; AND v;

The explicit forms of M; and v; are obtained from (72) and (73): The
resulting system of equations is

(z,. - a,.z(w/zA)PM) _ (1 + Tyo; Plaan(pno'n2/4D))( M; ) )
(m/2A)0,2P, Te 1 —~v,0y
with
Py = D pioiM, (C2)
P, = > poy (C3)

and the remaining quantities are defined in (52) and thereafter. Solution
of (C1) yields

< M; ) 1 ( I - Fl”an(Pn0n2/4D)) (Zf - sz(”/ZA)PM)
—v0; T AM —-Ta 1 + Tyo; (m2A)e 2P,
(C4)
with
AM =1 + Tyo; — (I'y040,)2p, Dof4D (C5)
Now the unknown parameters P,; and P, can be found by substitution
of M; and v,0; obtained from (C4) into the defining relations (C2) and (C3).
The result is again a system of two coupled equations for P, and P,

Pi%iZ; 1+ = P05 r 7pu0n° Do < pj0*
o AM B 2A& AM YU8DA &AM (pM)
Ps9;°Zs AN o gl + Togy P,
B2 3 Pigx 2.3y 14ag2 e’ —gw
(Co)

We then would solve (C6) and replace the result into (C4). This gives explicit
formulas for M and v;. Replacing these results into the equations of Section
2 and Appendix B will give us explicit expressions for all the quantities as
functions of I'y, I';, and b,. The resulting expressions are rather lengthy
and will not be given here.

For not too concentrated solutions, however, the quantities P,, and
P, are expected to be small and therefore can be neglected

Py~P, 0 (CD
so that
M, = z,/AM (C8)

vy = —Tyz;[AM (C9)
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from which the relevant parameters (52), etc., are

Q10 = 01D Y (pez?l A3 Anon — o/ AM) (C10)
k
B = —T1A, > puz? DM (C11)
k
D =1+ }pa0y® D pioy 2 (DM (C12)
k
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